Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(3): 1904-1916, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38115702

RESUMO

A new class of photoswitches and the corresponding elementary photoinduced reaction, the so-called Excited-State Cation Transfer (ESCT), are investigated. This reaction relies on an intramolecular photo-release/photo-complexation of cation: after irradiation, the cation is translocated from a complexation site 1 to a site 2 during the excited state lifetime. Our purpose is thus to develop a computational strategy based on Density Functional theory (DFT) and its time-dependent counterpart (TD-DFT) to improve the different properties of the ESCT photoswitches, namely (i) the ground state complexation constant K, (ii) the excited state complexation constant K*, (iii) the photoejection properties and (iv) the population of the triplet states from a singlet state via intersystem crossing to increase the lifetime of the excited state. In this work, we are interested in optimizing the ESCT properties of a betaine pyridinium chromophore substituted by a 15-aza-5-crown, that was previously shown to efficiently photoeject a Ca2+ cation from the site 1 but no photo-recapture was observed in the site 2 [Aloïse et al., Phys. Chem. Chem. Phys., 2016, 22, 15384]. To this purpose, we have investigated the impact of the modification of the site 1 on the ESCT properties by introducing different substituents (EDG groups, halogen atoms) at different positions. So far, promising systems have been identified but a simultaneous improvement of all the ESCT photoswitches properties has yet not been achieved.

2.
Chem Sci ; 13(46): 13732-13740, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36544719

RESUMO

The metastable trilacunary heteropolyoxomolybdate [PMo9O31(py)3]3- - {PMo9}; py = pyridine) and the ditopic pyridyl bearing diarylethene (DAE) (C25H16N2F6S2) self-assemble via a facile ligand replacement methodology to yield the photo-active molecular capsule [(PMo9O31)2(DAE)3]6-. The spatial arrangement and conformation of the three DAE ligands are directed by the surface chemistry of the molecular metal oxide precursor with exclusive ligation of the photo-active antiparallel rotamer to the polyoxometalate (POM) while the integrity of the assembly in solution has been verified by a suite of spectroscopic techniques. Electrocyclisation of the three DAEs occurs sequentially and has been investigated using a combination of steady-state and time-resolved spectroscopies with the discovery of a photochemical cascade whereby rapid photoinduced ring closure is followed by electron transfer from the ring-closed DAE to the POM in the latent donor-acceptor system on subsequent excitation. This interpretation is also supported by computational and detailed spectroelectrochemical analysis. Ring-closing quantum yields were also determined using a custom quantum yield determination setup (QYDS), providing insight into the impact of POM coordination on these processes.

3.
J Chem Theory Comput ; 16(11): 7017-7032, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-32955880

RESUMO

Photonastic materials present a directional and repeatable deformation of the material shape due to transduction from light energy to mechanical energy. Among these materials, light-responsive polymers, composed of photochromic molecules embedded in a polymer matrix, are of high interest. The present work aims at laying the foundation stone of the modeling of the photomechanical behavior of such systems by proposing a computational strategy that is able to investigate (i) the impact of the polymer matrix on the photochromic properties of a dithienylethene (DTE) switch and (ii) the impact of the photochromic reaction on the polymer environment. Contrary to previous approaches, the present model is able to propose a realistic arrangement of the photochrome embedded in the polymer film, thanks to the adaptation of the so-called "controlled-like polymerization algorithm" [Lemarchand, C. A.; J. Chem. Phys. 2019, 50, 224902]. Our strategy relies on molecular dynamics (MD) simulations and time-dependent density functional theory (DFT) calculations. Careful analysis of MD trajectories and comparison with simulations in solution have shown the rigidification of the DTE molecule due to the presence of the polymer chains, which hindered the interconversion between the DTE open-form isomers and can probably modify the photocyclization quantum yield. Besides, the UV-vis absorption properties of the DTE open-form isomers are more impacted by the polymer embedding than its closed-form counterpart. Concerning the impact of the photoreaction on the polymer matrix, the time evolution of the pressure tensor and of the atomic displacements in the matrix have shown that (i) the cyclization reaction has a negligible impact; (ii) the cycloreversion reaction induces a locally large and anisotropic pressure increase and leads to a collective displacement of the polymer matrix away from the reactive center; and (iii) the characteristic time scale associated with these coupled processes is below 1 ps. Therefore, the two processes involved in photonastic motions, namely, the photoreaction and the relaxation of the polymer matrix after the photoswitch structural change, cannot be decoupled.

4.
Chemphyschem ; 21(19): 2223-2229, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32930503

RESUMO

Time-resolved absorption spectroscopy measurements were performed to study the dynamics of photochromic 1,2-Bis(2,4-dimethylthiophene-3-yl)perfluoro-cyclopentene (DMTPF) in chloroform, including antiparallel conformer ring-closure reaction and parallel conformer photophysics. All characteristic times are given, discussed and compared to a previous publication concerning the close molecule substituted with phenyl rings. (Hamdi et al., PCCP, 2016). Apart from the expected photocyclization process, condensed ring by-product formation is observed and hypotheses concerning the origin of this by-product are presented.

5.
J Phys Chem B ; 124(42): 9396-9410, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32897728

RESUMO

A new donor-acceptor dyad composed of a BODIPY (4,4'-difluoro-4-bora-3a,4a-diaza-s-indacene) donor and a fullerene C60 acceptor has been synthesized and characterized. This derivative has been prepared using a clickable fullerene building block that bears an alkyne moiety and a maleimide unit. The post-functionalization of the maleimide group by a BODIPY thiol leads to a BODIPY-C60 dyad, leaving the alkyne moiety for further functional arrangement. On the basis of the combination of semi-empirical and density functional theory (DFT) calculations, spectroelectrochemical experiments, and steady-state and time-resolved spectroscopies, the photophysical properties of this new BODIPY-C60 dyad were thoroughly studied. By using semi-empirical calculations, the equilibrium of three conformations of the BODIPY-C60 dyad has been deduced, and their molecular orbital structures have been analyzed using DFT calculations. Two short fluorescence lifetimes were attributed to two extended conformers displaying variable donor-acceptor distances (17.5 and 20.0 Å). Additionally, the driving force for photoinduced electron transfer from the singlet excited state of BODIPY to the C60 moiety was calculated using redox potentials determined with electrochemical studies. Spectroelectrochemical measurements were also carried out to investigate the absorption profiles of radicals in the BODIPY-C60 dyad in order to assign the transient species in pump-probe experiments. Under selective photoexcitation of the BODIPY moiety, occurrences of both energy and electron transfers were demonstrated for the dyad by femtosecond and nanosecond transient absorption spectroscopies. Photoinduced electron transfer occurs in the folded conformer, while energy transfer is observed in extended conformers.

6.
Phys Chem Chem Phys ; 22(13): 6942-6952, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32181771

RESUMO

A dithienylethene (DTE) photochromic compound functionalized by ureidopyrimidinone (UPy) quadruple hydrogen bonding blocks was synthesized by Takeshita and coworkers [Takeshita et al., Chem. Commun., 2005, 761] in order to form a light-responsive supramolecular self-assembling system. In solution, the formation of supramolecular assemblies was only observed for one DTE isomer, namely the closed-form isomer. To rationalize this experimental finding, with the help of Molecular Dynamics (MD) and (time-dependent) DFT calculations, the behaviour of open-form and closed-form monomers, dimers, hexamers and π-stacked dimers in solution is investigated. Our simulations show that, for the open-form oligomers, the progression of the supramolecular assembly is hindered due to (i) the possible formation of a very stable cyclic dimer for the open-form parallel isomer, (ii) the relative flexibility of the open-form oligomers compared to their closed-form counterparts, and (iii) the possible existence of π-stacked dimers that constitute bottlenecks blocking the progression of the supramolecular self-assembly.

7.
J Am Chem Soc ; 141(48): 19151-19160, 2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31724855

RESUMO

Combining different molecular switching functions in a single molecule is a simple strategy to develop commutable molecules featuring more than two commutation states. The present study reports on two molecular systems consisting of two indolino-oxazolidine (Box) moieties connected to an aromatic bridge (phenyl or bithiophene) by ethylenic junctions. Such systems, referenced as BiBox, are expected to show up multiaddressable and multiresponsive behaviors. On one hand, the oxazolidine ring opening/closure of Box moieties can be addressed by chemical stimuli, and on the other hand, the trans-to-cis isomerization of the ethylenic junctions is induced by visible light irradiation (with a thermal back conversion). NMR and UV-visible spectroscopies allowed to characterize up to nine out of the ten theoretically expected commutation states as well as to measure the kinetics of the interconversions. Also, steady state fluorescence spectroscopy measurements highlighted the strong influence of the open/closed states of the Box moieties on their emission properties.

8.
Phys Chem Chem Phys ; 21(12): 6407-6414, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30839028

RESUMO

The excited state dynamics of constrained photochromic benzodithienylethenes were addressed by considering the bridging with polyether chains (from x = 4 to 6 units) at the ortho and meta positions of the aryl group, named DTE-ox and DTE-mx, via time-resolved absorption spectroscopy supported with (TD)-DFT calculations. The photochromic parameters and geometrical structures of these series are discussed. A novel photocyclization pathway via a triplet state, evidenced recently (Hamdi et al., Phys. Chem. Chem. Phys., 2016, 18, 28091-28100), is largely dependent on the length and the position of the polyether chain. For the first time, by comparing the two series, we revealed, for the DTE-ox series, an interconversion not only in the ground state but also between the triplet states of the anti-parallel and parallel open form conformers.

9.
Phys Chem Chem Phys ; 21(1): 46-56, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30371692

RESUMO

We report a QM (TD-DFT) and QM/QM' (ONIOM) study of the modulation of emission in a series of thiazolo[5,4,b]thieno[3,2-e]pyridine (TTP) derivatives [Huang et al., J. Mater. Chem. C, 2017, 14, 3456]. By computing the excitation energy transfer couplings and the Huang-Rhys (HR) factors, we rationalize the aggregation-caused quenching (ACQ) observed for the parent molecule and the crystallization-induced emission (CIE) observed for the derivatives presenting intra-molecular H-bonding. We also show that the CIE strategy relying on the rigidification of the arch-bridge-like stator should be considered with caution since it can promote the energy dissipation through vibrational motions.

10.
Phys Chem Chem Phys ; 20(42): 26804-26808, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30124694

RESUMO

Small changes in the pH gradient play a critical role in numerous biological and chemical pathways. Systems capable of monitoring and regulating these changes with high sensitivity and minimum photo-fatigue are in demand. Herein, we propose a visible light-triggered molecular system that allows for reversible regulation of acidity and fluorescence. This robust bi-functional system opens a new horizon towards novel studies that rely on small changes in acid-mediated controlled processes with high sensitivity. The two photosensitive compounds employed, a metastable-state photoacid (mPAH) and a boron-dipyrromethene (BODIPY) derivative, allow for consistent modulation of both fluorescence (based on the working principle of the inner filter effect) and pH (around a magnitude) over multiple cycles.

11.
Phys Chem Chem Phys ; 16(48): 26762-8, 2014 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-25372933

RESUMO

The photophysical properties of a series of dithienylethenes, free or blocked in an ideal photoactive conformation by an alkyl bridge, have been investigated by stationary, ultrafast spectroscopy and state-of-the-art time-dependent density functional theory calculations. Thanks to the clear ultrafast transient signatures corroborating NMR results, we bring strong evidence that the unreactive parallel open form conformer has been efficiently removed by the chain. For the first time, the photophysics of this species, namely an internal conversion of 120 ps is highlighted. In contradiction to the main ideas in the literature, the photocyclization mechanism is rationalized by a direct photocyclization mechanism from the Franck-Condon region passing directly through a conical intersection within ≈100 fs (not few picoseconds) while a competitive mechanism occurs through the relaxed S1 state. Relaxation processes (fluorescence and internal conversion) originating from this relaxed state are sensitive to the length of the blocking chain. Both concomitant pathways are necessary to rationalize: (i) the inverse relationship between emission and cyclization quantum yields and (ii) the non-unity value of the latter for bridged compounds.

12.
Phys Chem Chem Phys ; 16(40): 22262-72, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25219416

RESUMO

State-of-the-art experimental and theoretical tools were used to investigate the gas-phase relaxation dynamics of various photoexcited photochromic dithienylethene molecules in situations where several relaxation channels are simultaneously at play. Unconstrained and constrained dynamics were addressed by considering unbridged and bridged molecules with a polyether bridge of various sizes (from 2 to 4 units). Time-resolved ultrafast ionization spectroscopy techniques were used to probe the dynamics. This revealed the existence of several relaxation pathways from the first excited state to the ground-state. Characteristic times were determined for each process. These channels compete at an early stage of the dynamics only when the initial wavepacket splits into two parts. A striking excited state wavepacket oscillation is observed in bridged molecules. A general reaction mechanism is proposed which rationalizes the carbon-carbon distance rule which is widely used as an empirical tool to predict the photoactivity of photochromic molecules in crystals.

13.
Phys Chem Chem Phys ; 16(25): 12826-37, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24847503

RESUMO

The photophysical and nonlinear absorption properties of an oligo(phenylenethienylene)s series (nTBT) are investigated in this article. The length of the chromophore is gradually increased from one to four phenylenethienylene repeating units in order to evaluate the effects of the electronic delocalization on the two-photon absorption cross sections (δ). According to the excitation anisotropy measurements and quantum chemical calculations, two electronic transitions with distinctive symmetries, 1Ag → 1Bu and 1Ag → 2Ag, are present in the low energy region of the linear absorption spectrum. The lowest-energy transition 1Ag → 1Bu is one-photon allowed but two-photon forbidden and implies an electronic charge delocalization all along the oligomer segment whereas the weakly-allowed 1Ag → 2Ag transition exhibits a transition moment perpendicular to the average plane of the chromophore. The latter transition mainly contributes to the two-photon absorption ability of the oligomers. All derivatives are poorly solvatochromic and the breakdown of the mirror symmetry rule observed between absorption and fluorescence spectra at room temperature has been attributed to a photoinduced geometrical relaxation leading to a very efficient planarization process of the oligomer irrespective of its size. Increasing the oligomer length results in a slight shift of the two-photon absorption band (∼1300 cm(-1)) and in a drastic increase of δ from 2 ± 1 GM up to 802 ± 160 GM for 1TBT and 4TBT respectively. Based on a three-level model, it was found that main contributions to the strong increase of δ stem from the transition moments Mge and Mee' which are multiplied by a factor of 2.8 and 5 when going from 1TBT to 4TBT.


Assuntos
Fótons , Polímeros/química , Adsorção , Espectroscopia de Prótons por Ressonância Magnética , Espectrofotometria Infravermelho
14.
Phys Chem Chem Phys ; 16(4): 1460-8, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24301539

RESUMO

This work deals with the photophysics of novel pyridinium betaine based on 2-pyridin-1-yl-1H-benzimidazole (SBPa) substituted symmetrically by mono- (Th2SBPa) and bi-thiophene fragments (Th4SBPa). The study is based on a combination of steady-state, femtosecond transient absorption spectroscopic measurements supported by PCM-(TD)DFT calculations. It is found that the two step ICT process (S0 → S2 excitation followed by S2(CT) → S1(CT) internal conversion) occurring for the parent molecule remains unaffected for Th2SBPa while the situation is less clear for Th4SBPa. Actually, for both molecules, a new decay route involving the π-electron system localized in thiophenic groups is responsible for the production of triplet states. Involvement of this new route in the parallel production of S1(CT) is strongly suspected.

15.
Chemphyschem ; 14(12): 2725-36, 2013 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-23821579

RESUMO

The nonlinear properties and the photophysical behavior of two π-conjugated chromophores that incorporate an electron-deficient pyrimidine core (A) and γ-methylenepyrans as terminal donor (D) groups have been thoroughly investigated. Both dipolar and quadrupolar branching strategies are explored and rationalized on the basis of the Frenkel exciton model. Even though a cooperative effect is clearly observed if the dimensionality is increased, the nonlinear optical (NLO) response of this series is moderate if one considers the nature of the D/A couple and the size of the chromophores (as measured by the number of π electrons). This effect was attributed to a disruption in the electronic conjugation within the dyes' scaffold for which the geometry deviates from planarity owing to a noticeable twisting of the pyranylidene end-groups. This latter structural parameter also has a strong influence on the excited-state dynamics, which leads to a very efficient fluorescence quenching.


Assuntos
Corantes Fluorescentes/síntese química , Piranos/química , Pirimidinas/química , Corantes Fluorescentes/química , Cinética , Conformação Molecular , Teoria Quântica , Espectrofotometria Ultravioleta
16.
Phys Chem Chem Phys ; 15(17): 6226-34, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23515439

RESUMO

We investigate an inverse (I) dithienylethene, the bis(3,5-dimethyl-2-thienyl) perfluorocyclopentene, using absorption, emission and NMR spectroscopies as well as state-of-art first-principles (TDDFT) calculations. First, we find in addition to the expected antiparallel and parallel conformers, a new stable antiparallel conformer , but its energy is too high to be significantly populated at working temperature. More importantly, we demonstrate that, instead of an equal proportion of an AP and a P conformer as in normal (N) diarylethenes, the AP conformer is present in large excess. This result is confirmed by both DFT thermodynamical analysis and temperature-dependent NMR experiments modelized with an ↔ fast interconversion model. With the latter, the relative populations are estimated to be ca. 3/1 for /. Furthermore, the 0-0 energies simulated with a model that accounts for both vibrational and state-specific media effects of the ground and the excited states indicate that and have very similar absorption signatures while only the conformer should give rise to emission. Eventually, within excited state manifold, important topological points along the ring-closure reaction coordinate, and more specifically the unprecedented S1(opt) of the closed isomer, have been identified.


Assuntos
Etilenos/química , Teoria Quântica , Espectroscopia de Ressonância Magnética , Termodinâmica
17.
Phys Chem Chem Phys ; 14(6): 1945-56, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22231287

RESUMO

This work deals with the photophysics of a pyridinium betaine, 2-pyridin-1-yl-1H-benzimidazole (SBPa), based on a combination of steady-state, femtosecond photoionization (gas phase) and femtosecond transient absorption (solution) spectroscopic measurements, supported by (LR)-PCM-(TD)DFT calculations. Preliminary and new electrochemical results have revealed a strongly negative solvatochromic charge transfer (CT) absorption due to a S(0) → S(2) vertical transition and a weakly-solvatochromic emission due to S(1) → S(0) transition. Advanced TDDFT optimizations of the Franck-Condon states S(2)(FC) and S(1)(FC) led to two additional CT levels with planar geometry, S(2)(CT) and S(1)(CT), respectively, allowing prediction of a two-step photoinduced ICT process, i.e., S(0) → S(2)(FC) and S(2)(CT) → S(1)(CT), separated by a S(2)(FC) → S(2)(CT) back charge transfer relaxation. While the pyridinium ring is the acceptor group in both steps, two different donor groups, the benzene ring and the imidazole bridge, are involved in the excitation and internal conversion processes, respectively. Femtosecond transient absorption experiments supported by MCR-ALS decomposition confirmed indeed the contribution of two distinct CT states in the photophysics of SBPa: following excitation to the S(2)(CT) state, ultrafast production of the emissive S(1) state (the only channel observable in the gas phase) was observed to occur in competition with a further ICT process toward the S(1)(CT) state, with a time constant ranging from 300 fs to 20 ps depending on the solvent. While in aprotic media this ICT process was found to be purely solvent controlled (double polarity and viscosity dependency), in protic solvents, the influence of the hydrogen bond network has to be taken into account. Comparison with data obtained for a pre-twisted SBPa analogue led us to exclude the presence of any large-amplitude geometrical change during ICT. Analyzing the solvent dependency using the power law approach, we concluded that the S(1)(CT) state decays essentially through IC in the 3-40 ps time range whereas the emissive S(1) state decays within 130-260 ps via IC, ISC and fluorescence.

18.
Phys Chem Chem Phys ; 13(29): 13185-95, 2011 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-21695327

RESUMO

This work reports on the solvatochromic properties of a simple heterocyclic betaine pyridinium, 2-(1-pyridinio)benzimidazolate (SBPa), having promising potentialities in non-linear optics. From advanced PCM-TDDFT calculations, the solvatochromism of SBPa was found to be unusual, involving two different electronic states for absorption (S(0)→ S(2)) and emission (S(1)→S'(0)). To account for this behavior, we developed an innovative physical treatment which consists in a non-linear fit of the solvatochromic data using the Bilot-Kawski theoretical model and visualizing the least-square coefficient χ(2) on a 2D map as a function of the solute polarizability and gas phase absorption energy. In parallel, Kamlet-Taft correlations were undertaken to select a propitious set of electrostatic solvents usable in this treatment. Protic solvents that lead to specific interactions and nonpolar solvents that favor dimerization processes were excluded. From a choice of aprotic solvents with sufficiently high polarity, 4 dipole moments µ(g)(S(0)) = +9.1 D, µ(e)(S(2)) = -1.5 D, µ(e)(S(1)) = 0 D and µ(g)(S'(0)) = +3.31 D were determined, the 3 former values being in close agreement with TDDFT values, although the solute polarizability values seem underestimated. Anyhow, disregarding this discrepancy, we evaluated the static hyperpolarizability to ß(0) = -64 × 10(-30) esu from the solvatochromic data in close agreement with DFT calculations.

19.
J Am Chem Soc ; 132(21): 7379-90, 2010 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-20455540

RESUMO

Two photochromic diarylethenes blocked by alkyl bridges in an ideal conformation for photocyclization are studied by stationary and femtosecond transient spectroscopy in order to depict the photocyclization processes: the bistable 1,2-dicyano[2.n]metacyclophan-1-ene with n = 2, abbreviated as [2.2], and its non-bistable analogue with n = 4, abbreviated as [2.4]. The data are interpreted in the light of AM1-CIS calculations and state correlation diagrams based on conclusive TD-DFT calculations. For [2.2], a solvent-sensitive excitation wavelength threshold governing the photocyclization yield is clearly evidenced between the S(1) and S(2) singlet states. Excitation above and beyond this threshold induces two distinct photochemical pathways. The S(1) vertical excitation induces direct efficient (phi approximately = 0.9-1), and ultrafast (approximately 120 fs) photocylization from S(1) open form that leads to a ground-state transition structure, probably through a conical intersection, then to a hot cyclized ground state that relaxes by vibrational cooling. Upon higher excitation energy, the system undergoes internal conversion to the hot S(1) state, then evolves toward the cyclized S(1) state and relaxes by ultrafast S(1)-S(0) internal conversion. Alternatively, the possibility for a second conical intersection near hot S(1) state is discussed. This second photoclosure reaction is less efficient and both the photocylization yield and overall kinetics depend on solvent polarity (phi = 0.49, tau = 2.5 ps in nonpolar solvent; phi = 0.7, tau = 1.5 ps in polar solvent). In the case of [2.4], for which the distance between the two reactive carbons is larger, a unique photoclosure mechanism is found and a structural effect is reported. Indeed, this mechanim is similar to the above second reaction of [2.2] but characterized by much slower kinetics ranging from 12 to 20 ps (depending on the excitation wavelength and solvent polarity). All polarity effects are rationalized in terms of stabilization of the transient states of charge-transfer character involved in the photocyclization process.

20.
Photochem Photobiol Sci ; 9(5): 661-9, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20442925

RESUMO

Photodynamics of 2-hydroxybenzylideneaniline (photochromic salicylidene aniline SAOH) and N-(2-methoxybenzylidene)aniline (SAOMe) are studied by steady state and transient optical spectroscopy in solution and gas phase at different excitation wavelengths (266, 355 and 390 nm). Two competitive processes are observed from the enol* excited state: on one hand a rotation to get a twisted-enol, and on the other hand an excited state intramolecular proton transfer (ESIPT) followed by a cis-trans isomerisation to get the trans-keto photochromic product. For the first time both processes are characterized at an ultrashort time scale for salicylidene aniline. Resolution of the spectrokinetic data is achieved by multivariate curve resolution and attribution of the intermediate species recovered is performed in comparison with the results obtained for SAOMe, which can only undergo enol rotational isomerisation. It shows that ESIPT and rotation to the twisted-enol for SAOH occur within 100 fs, as predicted by recent quantum dynamical simulations, with an efficiency ratio dependent on the excitation wavelength. Therefore a general photoinduced mechanism for salicylidene aniline is drawn.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...